The “No” Hypothesis

 “I don’t think it will work”. 

was neatly printed across the answer box, under the word, hypothesis.

I looked up from her worksheet, bent my eyebrows into a question mark and punctuated it with a “huh?”

The student shrugged a shoulder, but her face was sure and solid. “ I don’t think it will work.”

“Nothing is going to happen.”  Her tone wasn’t angry, or even disappointed.  Just calling it the way she saw it.  Seemed like she’d seen a lot of “nothing is going to happen,” and this just seemed like the next one in line.

We’ve been working in her class to help students study and improve the conditions in their school.

We’ve talked about things students wanted to change at their school and how we can study them, and innovate to create improvements.  One group of students wants to make school lunches better.  Another group wants to find a way to control the temperatures in their classrooms.  A third group wants to reduce asthma triggers and asthma attacks.

This student had noticed that the bathrooms were a mess.  Some of the sinks didn’t work. The toilets were often plugged up, and toilet paper could be missing.  Sometimes there wasn’t even a bathroom monitor around to open the door.

Her project was to check the bathrooms and report on their condition to the janitor and the bathroom monitor. 

But “nobody’s gonna do anything.”, she said.  Matter of fact.

Science is supposed to be calculating and methodical. Just the facts, based on what we know.   Based on a long line of “nobody’s gonna do anything,” her hypothesis that “It won’t work” is a likely outcome.

But the soul of science and innovation is hope—that we can find ways to make things better.                        

Poor health and learning conditions in our schools steal from our children. When students swelter through heat waves and shiver in the winter; when poor ventilation and asthma triggers sap the energy and health of students, there are no sirens that alert us to this theft.  No data is collected to show us the loss of potential caused by these conditions.  In the city with the highest asthma rates in the state, we don’t even track absences due to asthma at our schools.

When these poor conditions become the expected norm, it breaks the hope which is fundamental to science and education.   If nothing’s going to happen, why try?

I don’t know which hypothesis is more likely to prove true.

 But whether students can create their own improvements and hope in Baltimore schools—that’s a very important experiment.  Science teachers, consider trying it with your students.

The Importance of Being Insistent

The outdoor lights are blazing away trying to keep up with the bright sun shining outside of North Avenue–the Baltimore City Public Schools district office. It’s an interesting welcome to a meeting on sustainability policy.

 
But inside the board room, something is different. Purpose and determination.  As Cheryl Casciani, a school board member pages through the draft of the sustainability policy, she is pointing out parts of the policy that staff need to revise.

 
“Encourage isn’t strong enough,” We need to change it to Insist.”

 
Peering over her glasses at school officials, Casciani moves quickly through the document to ask for stronger policies to protect children. Her points are quick, thoughtful and insistent.

 

“I’d like all toxics out of our schools… stop bus idling in front of schools…it’s a health issue.”
For a school district that still hasn’t implemented green cleaning as required by the state, this insistence toward progress is necessary and overdue. Plagued with poorly maintained schools and a lack of resources, change will only come when it is demanded and verified.
But how can we verify that changes in policy to improve the health and learning of students will be implemented in our schools?

 
Let the students do it.

 
Let our students use their school as a science laboratory, gathering and analyzing data on factors that affect their health and learning. Using common professional tools and protocols, our student can monitor, analyze and report on the environmental factors that affect their health and learning.

 
Students can use Tools for Schools by the Environmental Protection Agency (EPA) to proactively find and report issues that could trigger asthma attacks if left uncorrected. Using the Operations Report Card by the Collaboration for High Performance Schools (CHPS), students can monitor classroom ventilation, temperatures, humidity, and acoustics. Adding their school to the data base of the Energy Star Portfolio manager enables them to compare their energy use to similar schools and to calculate cost savings of energy renovations or improved operations.

 

 

As a hands-on science project investigating air quality, health, energy, engineering and technology, it aligns perfectly with Next Generation Science Standards, Common Core, Maryland Environmental Literacy requirements and STEM. This project studies the school as a system, integrating knowledge from the health professionals, facilities managers, custodians and teachers to improve the health and learning conditions at the school.
The information that students provide to the district could avoid or remedy health hazards, reduce repair costs and identify potential cost savings. In a pilot project at Baltimore Polytechnic Institute, students and faculty noticed excessive water charges over a several year period. The city water department has now credited over $447,000 back to the school district. Not bad for a one week project.
This project empowers students to use science and innovation to improve their school environment, their learning, and their lives. We owe them this chance. Let’s insist upon it.

For all of our children, thanks, Cheryl.